
B. Nouri-Moghaddam et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 3(Version 5), March 2014, pp.38-47

www.ijera.com 38|P a g e

e

Multi-Agent Based PGP Architecture

Babak Nouri-Moghaddam
1
, Mohammad Ismaeil Shahabian

2
, Hamid

Reza Naji
3

1
Graduate University of Advanced Technology, Kerman, Iran

2
Graduate University of Advanced Technology, Kerman, Iran

3
Graduate University of Advanced Technology, Kerman, Iran

Abstract
Pretty Good Privacy (PGP) is a package for securing emails, files communications. It is an open-source

package, which is available online for users. PGP provides some of the most important security services like

Authentication, Confidentiality, and Integrity. PGP Also applies compression techniques for compressing

messages and reducing their size. Also it uses Radix-64 encoding/decoding scheme for email compatibility.

The classic PGP has been formed by independent components and uses a hierarchal structure in which each

component is responsible for providing one of the services or features in PGP. This hierarchal structure forces

all the components, even the independent ones to be executed in a linear way. Because of this structure, each

component waits idle for long a time. As a result, the classic PGP has low performance and high execution time.

By studying this structure, we find out that we can redesign the architecture by using Multi-Agent systems to

eliminate bottlenecks. With this new design, we can achieve higher performance and faster execution time than

the classic PGP. In the proposed scheme, each Agent handles one of the PGP's components and in the

implementation semaphores will be used to handle each agent. By using this technique, we will have

concurrency between the agents and as a result the idle time will decrease and the proposed scheme will get

higher performance and lower execution time than the classic PGP. The experimental results show that our

scheme runs 30% faster than the classic PGP with different configurations of computer hardware.

Keywords: Pretty Good Privacy, Multi-agent systems, Email Communications, Authentication, Confidentiality

I. Introduction
PGP is a well-known security package,

which provides authentication and confidentiality

along with other security features. Commonly PGP

users use this package for signing and

encrypting/decrypting emails and files to increase

their communication security. For non-commercial

users PGP is a free package and available online, but

for commercial use, it has a low-cost version. PGP is

on the Internet Standards Track, it is under active

development, and its current specification is RFC

4880[1,2].

PGP applies the chain of actions like hash functions,

compressing algorithms, symmetric cryptography,

and public-key cryptography on a message to achieve

its goals. PGP considers the algorithms like a black

box and this feature makes it independent of the

algorithm implementation. The users are free,

whether to use the suggested algorithms or to use

their own algorithms. There is one condition that says

the sender and receiver ought to use same algorithms.

In 1991, Phil Zimmermann introduced the first

design of PGP. He was a member of a community

against nucleus technology. He wanted to design the

architecture for securing their community members'

communication (e.g. E-mail). The first version of

PGP included the symmetric algorithm. Zimmermann

and his team established their own company in 1992

and started to adjust PGP. For developing PGP's

architecture, he has done the following [3,4]:

1) First, he had designed the PGP architecture using

independent blocks. For each block, he selected

the best available algorithms.

2) The architecture he had designed was completely

independent from platforms (e.g. Operating

systems and processors).

3) He declared the whole package, source code and

its documentation free, and made it available

online.

4) Finally, he entered into an agreement with a

company to release low-cost commercial version

of PGP.

Users from around the world started to use

PGP, and in short PGP became very popular. Some

of the reasons for this explosive growth are [3,4]:

1) The most powerful reason for this growth is that

PGP is a free service, and available for all

platforms.

2) PGP, based on the algorithms that have a high

history of studies and reviews in public is

considered extremely secure. More specifically,

for the public-key encryption, it includes RSA,

RESEARCH ARTICLE OPEN ACCESS

B. Nouri-Moghaddam et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 3(Version 5), March 2014, pp.38-47

www.ijera.com 39|P a g e

DSS, and Diffie-Hellman. For symmetric

encryption it has an option to choose between

CAST-128, IDEA, and 3DES, and it includes

SHA-1 for hash coding.

3) PGP covers wide range of application e.g.

encrypting files or securing message which

would be used for communication over the

Internet or networks.

4) PGP is now on an Internet standards tracking

(RFC 3156; MIME Security with OpenPGP [2]).

Nevertheless, PGP still has an aura of an

antiestablishment endeavor.

From what published until now, there is not

any report of security bridges in PGP[5]. Actually, in

theory, the first versions have some security

problems, but they had been solved in the later

versions, so the standard suggests using later versions

instead of the old ones.

PGP officially has been used for email

contents and attachments encryptions. After 2002,

various versions of PGP have been released to

support different application like: distribute

encryption to manage central servers. PGP can

provide a wide range of services like email and

attachment security, digital signature, encrypting of

the whole hard disk, security of files and folders,

encrypt and batch file transferring, encrypted HTTP

request/ response on the client server architecture

[3,5].

By studying this structure, we find out that

we can redesign the architecture by using Multi-

Agent systems to eliminate bottlenecks. With this

new design, we can achieve higher performance and

faster execution time than the classic PGP. In the

proposed scheme, each Agent handles one of the

PGP's components and in the implementation

semaphores will be used to handle each agent. By

using this technique, we will have concurrency

between the agents and as a result the idle time will

decrease and the proposed scheme will get higher

performance and lower execution time than the

classic PGP. The experimental results show that our

scheme runs 30% faster than the classic PGP with

different configurations of computer hardware.

The rest of the paper has been structured as

follows. In section 2, we first survey the Classic

PGP's structure. Section 3 shows the theoretical

implementation and time analysis of classic PGP.

Section 4 describes our proposed scheme and then we

will discuss about its time analysis. In Section 5, we

discussed some practical implementation issues.

Section 6 shows the results of the implementation

and compression between two schemes' results.

Finally, Section 7 concludes this paper and points out

the future works.

II. Related works
2.1 Notation

We use the following notation throughout this

paper:

 S: Sender

 R: Receiver

 M: Message

 MD: Message Digest

 Ks: Session key used in symmetric encryption

scheme

 PRa: Private key of user A, used in public-key

cryptography

 PUa: Public key of user A, used in public-key

cryptography

 EP: Public-key encryption

 DP: Public-key decryption

 EC: Symmetric encryption

 DC: Symmetric decryption

 H: hash function

 || : concatenation

 Z: compression has been using the ZIP

algorithm

 R64: conversion to Radix 64 ASCII format

2.2 Classic PGP

PGP Package is a combination of different

cryptographic techniques; it uses symmetric and

asymmetric cryptography to provide various security

services. The main objective of PGP is to provide

authentication and confidentially in the best way

possible. Digital signature and Public key

cryptography schemes have been used to achieve

authentication. First, it computes a message digest

using Hash function and then encrypts the MD with

sender's Private Key. At the last step, the results

prepended to the message. RSA and SHA-1 are

recommended by PGP's standard for Public key

encryption and message digest computation. For

confidentiality, PGP applies symmetric encryption

and Digital envelope schemes. After concatenating

phase, PGP chooses random key as a session key and

encrypts the message with symmetric key algorithm

using the random session key. For session key

transmission, the sender encrypts the random session

key with receiver's Public Key, and then the result

will prepended to the encrypted message. CAST,

IDEA, or 3DES is recommended by PGP's standard

for symmetric key encryption. In addition, the

standard recommends using RSA or Diffie-Hellman

for key exchanging.

Actually the steps we talked about, was half

of the protocol. Another half of the action takes place

on the receiver side. Signature verification, key

exchange, message decryption, message Integrity

check, and other phases take place on the receiver

B. Nouri-Moghaddam et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 3(Version 5), March 2014, pp.38-47

www.ijera.com 40|P a g e

side. For this reason, we separate two side's actions

and explain them in separate sections.

2.2.1 On the sender side:

Sender will do the following actions to

create and send PGP packets (Figure 1) [3]:

a) The sender generates the message.

b) Compute the MD by using a Hash function, e.g.

SHA-1.

c) The MD will be encrypted with senders PRa and

using a Public Key algorithm e.g. RSA.

d) The signed MD prepended to the Message.

e) Compression algorithm (Z) like ZIP function

will be used to reduce the size of the new

message.

f) After step 5, Ks is generated by the random

session generator function. Note that the each Ks

will be used just one time.

g) The EP e.g. CAST will be applied to the

compressed message.

h) For transmitting the Ks, it will be encrypted by

applying RSA or Diffie-Hellman using receiver's

PUb

i) The result prepended to encrypted message and

then sender will transmit the whole packet to the

receiver.

Figure 1. PGP sender side flowchart

2.2.2 On the sender side:

The receiver does the following actions to

get the original M, authenticate sender and check M

integrity (Figure 2)[3]:

a) Get the encrypted Ksby decrypting it. For this,

propose receiver uses PRb with the Public Key

algorithm.

b) After getting the Ks, receiver decrypts the

encrypted zip message.

c) The result will be decompressed. After

decompressing, the receiver will get the

original message and signed MD.

d) For authentication and integrity check,

receiver decrypts the signed MD with senders

PUa and gets MD.

e) In addition, receiver computes the MD' using

the Hash function.

f) Finally, the receiver compressed MD and MD'.

If the compressed MD is equal to MD', the

sender is considered as valid user and the

message will be approved too.

Figure 2. PGP receiver side flowchart

PGP package performs integrity check on

the message to make sure the message did not change

on the way. Also by validating the digital signature,

the receiver will ensure that the message created by

valid sender.

There is one necessary condition in using

PGP; each entity in PGP communication (e.g. Sender

or Receiver) should know the other entity's Public

Key. In practice, using Public Keys like the way we

talked has some issues, because Public Keys can be

forged or eavesdropped in the communication. In the

latest versions of PGP, they solve this problem by

using some kind of certificate mechanism.

Classic PGP's architecture uses the

hierarchal design and does not talk about how each

component in PGP will be executed. In the next

B. Nouri-Moghaddam et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 3(Version 5), March 2014, pp.38-47

www.ijera.com 41|P a g e

section, we will analyze the Classic PGP's execution

model and time consumption.

III. Theoretical implementation and time

analysis of classic PGP
3.1 Sender Side Implementation:

As it shown in figure 3, the PGP hierarchy

has been implemented by applying number 1 to 9 for

each operation in PGP.

1) Message digest generator function: we use

SHA-1 hash function for computing message

digest. SHA-1 takes a string with maximum

length of 2
64

 bits as input and then returns 160-

bit message digest.

2) Public key encryption: for signing message

digest, the sender will encrypt the message

digest by applying the RSA function with its

own private key.

3) Merge function: this function prepends the

singed message digest to message.

4) Compression function: result of the Merge

function, will be compressed by using ZIP

function.

5) Session key generator function: this function

generates 128-bit random key.

6) Public key encryption: the session key will be

encrypted with RSA using the receiver's Public

key.

7) Symmetric encryption function: CAST

function will be used for encryption of the

compressed message.

8) Merge function: encrypted session key will be

prepended to the encrypted message.

9) Encoding function: the result of step (h) will

be encoded with Radix64 function.

Figure 3. Sender side implementationOperations 1, 2, and 3 cover the authentication and integrity services;

Operations 5 to 9 cover confidentiality.

3.2 Time analysis of Sender side operations:

If we assume T is the average execution

time of each operation and functions are executed

sequentially and separately, then the total execution

time will take 9T for sending one message (Figure 4):

Figure 4. Time analysis of Sender side operations

3.3 Receiver Side Implementation:

According to theFigure 5, PGP's hierarchy

has been implemented with operations 1 to 9. Each

operation is explained as follow:

1) Decoder function: it takes an incoming packet as

input and decodes it using Radix64 decoder. The

output will be used as input to theSeparator

function.

2) Separator function: incoming packets consist of

encrypted session key and encrypted message;

Separator function separates these two parts from

each other.

3) Public key decryption function: for extracting

session key from an incoming packet, Receiver

decrypts the encrypted session key with its

private key.

4) Symmetric decryption function: after extracting

the session key, the receiver decrypts the rest of

the packet with CAST function using the session

key.

5) Decompress function: the result of the step (4)

will be decompressed with Unzip function.

6) Separator function: the decompressed packet

consists of two parts. Part one is the original

message and part is the digital signature; this

function separates these two parts from each

other and each part will be used as input to the

different function.

7) Public key decryption function: for signature

validation, the receiver will decrypt the digital

signature with the sender's public key.

B. Nouri-Moghaddam et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 3(Version 5), March 2014, pp.38-47

www.ijera.com 42|P a g e

8) Message digest generator function: SHA-1 hash

function will be used for computing message

digest.

9) Comparison function: the result of the steps 7

and 8 will be compared to each other, if these

two match each other the sender is valid one.

Otherwise, message has been modified or sender

is not the one who has claimed.

Operations 2 to 4 are covering

confidentiality service; and operations 7 to 9 will

cover authentication and integrity services.

Figure 5. Receiver Side Implementation

3.4 Time analysis of Receiver side operations:

Same as the sender side operations, we assume T is

the average execution time of each operation

functions are executed sequentially and separately,

then the total execution time will take 9T for getting

the original message (Figure 6):

Figure 6. Time analysis of Receiver side operations

IV. THE PROPOSED SCHEME: Fast

PGP using Multi-Agent systems
In the previous section, we presented classic

PGP's implementation. The results of analyses show

some PGP functions are independent from others

which can be run simultaneously. In follow, we

discuss how to use Multi-Agent systems for running

and handling independent function simultaneously.

4.1 Applying Multi-Agent architecture to Sender

side:

Figure 7shows that how we can use Multi-

Agent architecture to run independent functions

simultaneously. In the following, we will explain our

proposed scheme:

B. Nouri-Moghaddam et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 3(Version 5), March 2014, pp.38-47

www.ijera.com 43|P a g e

Figure 7. Data flaw graph of the proposed scheme on the sender side

Message digest generator function uses the

SHA-1 Agent to compute a 160-bit message digest.

Thus for signing message digest, the RSA Agent

should begin after SHA-1 Agent completed its result.

Signing message digest can run concurrently with

Merge Agent; and the digital signature will be

prepended at the end of the original message. Zip

Agent starts depends on the result of merging phase

then it should start after the Merge Agent. The

random session key generator Agent could run

concurrently with operation (a) to (b), because the

operation of this Agent is independent of them; but

the result of the key generator Agent should be ready

before CAST started.

CAST Agent will be started after the

compression phase. Encrypting session key with RSA

depends on the result of the random session generator

Agent. As a result, it should be started after this

Agent but it can run concurrently with functions 1, 2,

3, d and 7; because there is not any dependency

between them. Note that the Public key encryption

needs more time than any other operation.

The Merge Agent can be removed, as we can use the

result of the Agents 6 and 7directly as input to the

Radix64 encoding Agent and by this way Radix64

can run concurrently with Agent 6 and 7. Radix64

encoding Agent writes the output directly into the

buffer.

4.2 Time analysis of applying Multi-Agent

architecture to Sender side:

By analyzing proposed scheme on the

sender side, we can see that in theory execution time

of PGP will be decreased to 3.5T. Compared to the

classic PGP, the execution time of the proposed

scheme is less than half of the classic PGP. Figure

8shows the time analysis of the proposed scheme:

Figure 8. Time analysis of applying Multi-Agent

architecture to Sender side

4.3 Applying Multi-Agent architecture to Receiver

Side:

B. Nouri-Moghaddam et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 3(Version 5), March 2014, pp.38-47

www.ijera.com 44|P a g e

We are proposing new design for the

receiver side using multi agent systems; the proposed

scheme has been shown inFigure 9.In the following,

we explain our proposed scheme on Receiver Side:

Figure 9. Data flaw graph of the proposed scheme on the receiver side

Radix64 Agent receives incoming packets

and starts decoding the packet; the result of this

operation will be a data in ASCII format.

By knowing the length of the encrypted

session key, the Separator Agent can be executed

simultaneously with the Radix64 Agent. Separator

Agent can separate the encrypted session key and the

encrypted compressed message from each other

while the Radix64 Agent decodes the incoming

packet. Immediately after filling the encrypted

session key buffer by Separator Agent, RSA Agent

starts to decrypt Session key using the receiver's

private key.

CAST Agent initiates after the RSA Agent

should complete extraction of the session key. If the

random session key got ready, the CAST Agent will

wait for the Separator Agent to fill the CAST Agent

buffer with compressed message, any time that the

buffer is filled, the CAST Agent will start to decrypt

it.

When CAST256 Agent finished decrypting,

Decompress Agent starts to decompress the output.

By completing decompressing phase, Separator

Agent starts to separate original message and digital

signature from each other.

After the Separator Agent finished its job,

the RSA Agent and SHA-1 Agent will start

simultaneously; the SHA-1 Agent will compute

message digest of the original message and RSA

Agent will decrypt the digital signature using sender's

public key. Finally, after SHA-1 and RSA Agents

finished their computations, the Comparison Agent

compares the two results, if they are equal then the

message will be accepted, otherwise the packet is

discarded.

4.4 Time analysis of applying Multi-Agent

architecture to Receiver side:

The time analysis of new scheme on

receiver side is shown in figure 10. As we can see in

this figure and also theoretical analyze because on

operations' nature the time reduction is not the same

on the receiver and sender sides. Time reduction on

the receiver side by applying multi agent technique is

about 4.7 T; and total time to finish its job is about

5.3 T.

B. Nouri-Moghaddam et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 3(Version 5), March 2014, pp.38-47

www.ijera.com 45|P a g e

Figure 10. Time analysis of applying Multi-Agent architecture to Receiver side

V. Implementation of the Proposed

Scheme
We have implemented the Classic PGP and

proposed scheme, both using C language. There are

some important issues about Implementation of the

Proposed Scheme that should be considered. First, we

should solve the mutual exclusion problem, because

Agents should work together, wait for other agents'

results, inform other agents to start their procedure,

and agents should never write shared buffers at the

same time. We used one of the operating systems

techniques known as semaphores and we assigned a

semaphore to each agent. Any agent who has to work

with other agents, which they have a shared value in

use, should use "Wait" or "Release" command to

work with the shared value. For example, in sender

side the CASTAgent waits for the results of Session

key generator Agent and Compression Agent, CAST

Agent uses "Wait" command and waits on the

CAST256 semaphore. When the other two agents'

results completed, they use "Release" command to

release the CAST256 semaphore and as a

result,CAST agent finds out these agents had finished

their work and it starts its procedure.

In the implementation, we used seven

semaphores and assigned one semaphore for each

Agent; The total number of the semaphores are fewer

than Agents, because we have some agents like

Merge Agent and RSA Agent which appeared in

different places but just running the same procedure.

We considered one extra semaphore for Main agent

to handle other agents. The Main Agent is used for

managing other agents, initializing start values like

sender/receivers' Public keys, reading the original

message into the main buffer; and forwarding PGP

Packets and etc.

In the proposed scheme, there are a number of

buffers, which are used as shared values between

agents. We have a main agent buffer, this buffer is

filled with the original message, and Main-

Semaphore handles accessing to it; the other agents

will use these buffer to gain access to the original

message. There is 160 bit message digest buffer,

which will be used to hold message digest that

computed by SHA-1 Agent. SHA-1-Semaphore

handles accessing to this buffer. A 640-bits buffer has

been used for storing the RSA Agent's results; RSA-

Semaphore is responsible for access controlling of

this buffer. By releasing or waiting on these

semaphores, the agent will be aware of the other

agents' conditions, and when the semaphore is

released by one agent, the agents who have waited on

that semaphore will start their procedure. The

complete data flow and semaphores' actions that are

shown in the

Figure 7andFigure 9.

To implement different components of the

PGP like hashing, compression, etc. we used the

standard C libraries that are available for free. For

hash function, we choose SHA-1 algorithm. For

symmetric key cryptography, CAST-256 algorithm

has been selected. RSA algorithm has been selected

as Public key cryptography. For ASCII format

encoding and decoding, we chose the Radix64

standard algorithm. Lempel-Ziv compression

function selected for compression.

VI. Experimental evaluation
We have implemented the proposed scheme

on the Intel's multi core CPU and AMD phoneme. C

programming language is used for implementation.

After implementing schemes, we ran different tests

on both schemes and studied the results. For testing,

B. Nouri-Moghaddam et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 3(Version 5), March 2014, pp.38-47

www.ijera.com 46|P a g e

we used packets with different size, the packets size

are 20 KB, 40 KB, 80 KB, 120 KB, 160 KB, and 200

KB. Figure 11and Figure 12 show the test result on

different samples.

Figure 11. Sender Side's result

Figure 12. Receiver Side's result

The results show that the proposed scheme

reduces execution time at sender side about 35%, and

26% in receiver side. The total, the time reduction is

about 30.5%.

The experiments' results show that the time

reduction does not match with theoretical predictions,

because we haven’t take into account the overhead of

handling agents. This overhead decreases the

proposed scheme's efficiency. The results show when

we are using small message, there is a little

difference between the two schemes because the

execution time is very small, so the reduced time can

be neglected. The sender side results show the

proposed scheme has more linear behavior than

Classic PGP, because we have good concurrency

between Agents and as a result the time reduction of

the proposed scheme is about 35%. Time saving at

receiver side of the proposed scheme, has similar

behavior more like to Classic PGP because we have a

little concurrency in this form and as a result the time

reduction of the receiver side is about 26%.

The major benefit of the proposed scheme is

in using large messages or files. By using large

messages the agent's handling overhead can be

neglect compared to the time reduction. The time

reduction is very considerable that is about 36 ms in

the 200 KB message size and using larger message

the scheme will save more time.

Based on the results, we can reach time

reduction around 30.5%, and this time saving can

have a major benefit on Mail servers that sends or

receives many messages and because of the security

services, Mail servers should do a lot of

encryption/decryption on messages. The main goal of

the experiment is to demonstrate the performance of

our new approach. It is also highly desirable to

investigate the performance of the proposed scheme

B. Nouri-Moghaddam et al Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 3(Version 5), March 2014, pp.38-47

www.ijera.com 47|P a g e

when we have predefined compression Code Book

and multiple Merge Agents for handling merge

procedure. This also can be considered for our future

research.

VII. Conclusion
PGP is a very popular security package for

email communication and other file transfer

protection. The PGP architecture has a hierarchical

style and this style is not changed from the start. In

this paper, we proposed a new architecture for PGP

using Multi Agent systems. We selected the actions

that can be executed concurrently with other actions.

Each agent handles an independent action. For

managing Agents, we consider a main agent that

handles the concurrency and job flow between

different agents.

We have analyzed the proposed scheme and

our analysis shows that the proposed scheme can

reduce the execution time about 50%. For

demonstrating the real performance of the proposed

scheme, we have implemented it and the Classic

PGP. The results show that total time saving in both

sender and receiver side is about 30%. The agent

handling overheads reduce the performance of the

proposed scheme. For the future work, we will

examine caching techniques and predefined

compression Code Book to increase performance of

the proposed scheme.

References
[1] J. Callas, L. Donnerhacke, H. Finney, and R.

Thayer, "OpenPGP message format", RFC

2440, November1998.

[2] OpenPGP, RFC4880,

http://tools.ietf.org/html/rfc4880

[3] PCWorld. "PGP Encryption Proves

Powerful". 2003-05-26. Retrieved 2010-02-

08.

[4] R. K. Nichols, ICSA guide to cryptography:

McGraw-Hill Professional, 1998.

[5] P. R. Zimmermann, "An introduction to

cryptography", Network Associates Inc.,

PGP, version, vol. 6, 1995.

[6] W. Stallings, Network security essentials

vol. 4: Prentice Hall, 2010.

